Hierarchical Clustering Based on Mutual Information
نویسندگان
چکیده
Motivation: Clustering is a frequently used concept in variety of bioinformatical applications. We present a new method for hierarchical clustering of data called mutual information clustering (MIC) algorithm. It uses mutual information (MI) as a similarity measure and exploits its grouping property: The MI between three objects X,Y, and Z is equal to the sum of the MI between X and Y , plus the MI between Z and the combined object (XY ). Results: We use this both in the Shannon (probabilistic) version of information theory, where the “objects” are probability distributions represented by random samples, and in the Kolmogorov (algorithmic) version, where the “objects” are symbol sequences. We apply our method to the construction of mammal phylogenetic trees from mitochondrial DNA sequences and we reconstruct the fetal ECG from the output of independent components analysis (ICA) applied to the ECG of a pregnant woman. Availability: The programs for estimation of MI and for clustering (probabilistic version) are available at http://www.fz-juelich.de/nic/cs/software. Contact: [email protected]
منابع مشابه
A Bayesian Alternative to Mutual Information for the Hierarchical Clustering of Dependent Random Variables
The use of mutual information as a similarity measure in agglomerative hierarchical clustering (AHC) raises an important issue: some correction needs to be applied for the dimensionality of variables. In this work, we formulate the decision of merging dependent multivariate normal variables in an AHC procedure as a Bayesian model comparison. We found that the Bayesian formulation naturally shri...
متن کاملLIMSI @ MediaEval SED 2014
This paper provides an overview of the Social Event Detection (SED) system developed at LIMSI for the 2014 campaign. Our approach is based on a hierarchical agglomerative clustering that uses textual metadata, user-based knowledge and geographical information. These different sources of knowledge, either used separately or in cascade, reach good results for the full clustering subtask with a no...
متن کاملClustering of a Number of Genes Affecting in Milk Production using Information Theory and Mutual Information
Information theory is a branch of mathematics. Information theory is used in genetic and bioinformatics analyses and can be used for many analyses related to the biological structures and sequences. Bio-computational grouping of genes facilitates genetic analysis, sequencing and structural-based analyses. In this study, after retrieving gene and exon DNA sequences affecting milk yield in dairy ...
متن کاملMIC: Mutual Information based hierarchical Clustering
Clustering is a concept used in a huge variety of applications. We review a conceptually very simple algorithm for hierarchical clustering called in the following the mutual information clustering (MIC) algorithm. It uses mutual information (MI) as a similarity measure and exploits its grouping property: The MI between three objects X ,Y, and Z is equal to the sum of the MI between X and Y , pl...
متن کاملAssessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories
In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...
متن کاملAgglomerative Info-Clustering
An agglomerative clustering of random variables is proposed, where clusters of random variables sharing the maximum amount of multivariate mutual information are merged successively to form larger clusters. Compared to the previous info-clustering algorithms, the agglomerative approach allows the computation to stop earlier when clusters of desired size and accuracy are obtained. An efficient a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره q-bio.QM/0311039 شماره
صفحات -
تاریخ انتشار 2003